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A B S T R A C T

The Buffon need le p rob lem and some var iations
are used to i llus trate c lass i cal sta tistical methods
of estimation and to lead Into , and contrast with ,

the prob lems wh ich ar ise when a sample of some random
structure is the data. The flavor of these problem5

Is conveyed largely by discussion of the simplest ,

and most described , case, that of point processes.
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1. INTRODUCTION

The Buffon needle problem has Its origins in gambling. But , un-
like card and dice games, it requires some geometry and calcu’us.

Thus it was a bold step In generalizing the idea of mathematical

probability . The needle problem and minor variants have been studied

by many authors up to the present day as a means of estimating v

statistically. More sensibly, however , they provide a means of in.

ferring the ratio Of the length of the needle to th. scale of the

regular network onto which it Is thrown. And of course this is the

origin of modern methods for the sampling study of geometric bodies.

Thus It seems most appropriate at this Symposium to begin my tal k by

going over this work which used only quite standard statistical ideas.

However when the nee dl e is re pl ace d by a more genera l probe or
sampling w indow -- In other wor ds, some set -— and the regular net-
work is replaced by a random structure, we mus t face statistical prob-

lems of quite a di fferent character. They are akin to those met in

time series analysis which has a long history by statistical standards

but in wh ich there Is still some confusion between the exploratory,

modelling and confirmatory aspects and a lack of communication betweer

probabi lists end statisticians. The spatial problems are decidedly

more di fficult. There are not so many explici t probability odels to

get statistical experience with . One must consider the shape as well

as the size of sampling windows . The data has a more awkward form.

The second part of the lectur. will therefore merely give some idea
of these problems and their literature . Hopefully other speakers

will  address them in detail. But It Is clear that statistical geo-

met ry or morphology Is Just beginning.
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2. BUFFON PROBLEMS

The classical problem considers a parallel grid wi th spacing a

and a needle of length £ where L ~ a. If the needle is tossed so

that Its position and orientation are random , the probability p that

It cuts a grid line is given by

(1)

Uspensk,y (1937), Kendall and Moran (1963), for examp le, give proofs of
this and most of the results used below.

Define • , r • and suppose that n independent trials

(tosses) yield C cuts. Then ~ (C) Binomial (n,p) where p • 2$r.

The statist ical p roblems that ar ise are
(I) estimate •, i.e., estimate t

(ii) estimate r, i.e., estima te a- if £ Is known
(iii) test that r • r0 (known).

The most complete reference on (1) in this case and those given below

is Pen man and Wichura (1975). Oddly no one seems to have considered

(ii) and (Iii). Trivial though they are, they are the prototypes of

the real problems .

The likelihood of the data when c c~,ts are observed is

(~ )pC(1_p )n C  and the number of cuts is a complete sufficient statis-

tic for p. Thus we may assert: among all functions fCc) such that

Ef(C) • p, for a ll p In (0,1), It is true that

van fCC) ~ var • n p(1-p) . (2)

p Thus the obvious estimator of p, • C/n is, uniformly -in p, the

_ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _  
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minimum variance unbiased estimator of p.

If one knows r and wishes to estimate i, the same is true of

va r ( )  •

~~~~~~

—

~~~~~~~~~

- i J .  (3)

Howeve r • 1/ is biased. If n Is large , we may argue that

- E~ [i +

:~~~

• i ~ O +~~~~~_ 4•T  as ~~~~

Further ft follows from (3) that

var ;i
:_

~r ( ~~~_ i )  . (4)

Thus if one is set on est imat ing w this way and can design the
experiment’ one should take £ a since this choice minimi zes (4).

In this case var 5.63/n. Lazzerlni (1901) conducted such an

experiment with n • 3408 and found - s 3 x 1O~~. As Kendall

and Moran (ibid.) suggest, he must have stopped when he noticed the

remarkab le and fortuitous accuracy~
In fact we know • and are more likely to want to know a.. By

the same ar gumen ts use d ab ove , ~ — , and we wil l have
(i.a as f l4 .  and

var (
~

) : !~_ ( !!z: - . (5)
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L
Again if we can choose the needle size we should try to make it

near to but less than a. Thus the effort to optini ze oay lead to

bias since (1) is false when L > a. Trivially If a is large , a

Is Gaussian so tests are easy to make .

Instead of a parallel grid , Laplace considered a rectangular

grid , the A lines being a apart, the B lines being b apart.

He showed that the probability that the needle cuts at least one lire

Is
2Ua+4) - 6irab

a fascinating formula whose direct derivation Is tricky so that It

seems easier to get it from a more general Crofton argument. To

Illustra te my points here set a b and

- a E ‘
Introducing the notation

P~B • Pro b (need le cuts a B li ne but not an A line) ,

P~~
. • Prob(needle cuts neither an A nor a B line).

etc., formula (6) Is clearly 1 - P~~- . Further If

• Pro b (nee dl e cuts an A li ne)
• Prob(needle cuts a B line)

then
• 
~AB + 

~AW 
‘ 2r~ ,

p
1 ~AB + 

~~ 
— 2r$

and
1
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These three equations plus (6) for 1 - P~~- yield

~AB r2, 
‘ ~AB 

— 
~~~ 

r(2—r)$ (7)

and for brevity we follow Pen man and Wlchura In wnt~~ng

P~~
. — 1 — (4r-r 2)~ 1 — m~ • (8)

Let n trials yield results (In an obvious notation)

• 
~~AB’ ~A~’ ~~~ 

nAn-). Then

~~(N) • 4-nomial (n; 
~AB’ ~A~’ 

P~~, P~~)

Thus the likelihood of the data Is proportional to

~AB ~AI ~ABL S P AB ~AI ~AB

Do f I n I n g
N0 — n~1 —~~~no cuts

I 1 CUtS

N2 ~A8 
‘12 cutS

a

and using (7) and (8), L may be written as

N0 N 1+N 2N2+N 1 N 1L— (1— m, ) • 2 r (2-n) . (9)

Thus If r is known , N0 or N 1 + N2 Is a complete sufficient

statistic for • and L(fl1+N2) • Blnoml e l (n, sit) so the story of the
estimato r of ii follews the previous pattern . The resulting estima-
tor has , for n lar ge, a variance equal to 0.47/n so that the

e~ctra wor k in us ing a square grid yiel ds an est imator wh ich is 12

times as efficient as that for the parallel grid.

- 
-

~~ 
- :  - — ___
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However to estimate r knowing ir is quite different. The

practical method Is to choose r to maximize the likelihood (9).

Setting a log Liar equal to zero leads to the equation

N 2r-4 2N +N N0 
_ _ _  + 2 1 j_  

• 0 (10)
1 4r-r’ r 2-n

ii -

which must be solved Iteratively to yield . The standard theory of

maximum likelihood estimation gives us an asymptnt-Ic formula for ~,

var~~~— ~~ / -  
~2 log i. (11~/ 3r

and asymptotic normal ity of P so that tests can be made.

The rectangular grid follows the same pattern with

— , r~ • , I is a function of r1 and ‘2 which are esti-

mated by solving ~ log L/ar1 ‘ 0, a log L/3r2 • 0. Other regular

networks do not introduce the need for further techniques .

Above we cons idere d onl y the case of £ ~ a • b. The case when

L is much greater than a. Is simple and Instructive to consider.

Let then this long needle intersect the B lines at an angle 0.

Then 8 is uniforml y distributed on (O,ir/2) . If we define

NA I A l ines cut : r cos 0 ,
N8 • I B lines cut ~ r sin 0 • (12)

N • I lines cut : r(cos e + sin 0) , J
we have
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ir/2 2EN A~~~~ f 
r cos e d 0 a -

~~
aE( NB)

[N •

EN2 = E(r 2 + 2r2 cos 0 sIn 0)

— r2(1 +

var N r2(i + 
2 

- (4)2)

:ience If we make n throws and fi nd E as the average number of

ru ts , It will be en unbiased estimator of E(N). Hence the estic2atc r

of ir that Is suggested , following our caller work , is

1T3 C

and an easy calculation shows that

A 

~ W~ var Nvar ir~~—‘ 16r’

: 0.0095

While this seems a great improvement, we will show below that one can

do better still with this experiment.

To es timate r from ~ , the “natura l” method Is to set r ~~C

with var 4 (i + - .L~.J. This estimate too can be improved

because neither Is the maximum likelihood estimato r, as was true of

our fi rst three examples.

__________________________________ _______________________________ - I
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From (12), N — r cos 
(e 

- so that

Prob (N ~ k ) a Prob (cos 
~
, ~ k/n/2) where ~~(q,) Is un i form on

(-w/4, w/4). Let 4,
~ 

a COS 1 —h--- Then

Prob (N ~ k) 2 Prob(4, > *~)
(13)

so that the probability density of N at k is the partial derive-

tive of (13) with respect to k , namely

4 1

‘ /2r2 — k 2

Thus given counts ~~~~~~~ In n trials , their likelihood is

1
1 W -

provided r � all the k1 ’s ~ r, and zero otherwise. Thus the

maxi mum likelihood estimate of r is

r* — ~~~~~ max( k1.....k~) (14)

not P - ir~~/4. It may be shown that the variance of r* is of order

n 2, not order n~~ like that for P. Thus for large n, r* Is a
very much better estimator than P. This shows dramatically that the

usual practice In geometrical statistics of obtaining estimators by

equating theoretical and observed means may be v~j~y inefficient. So

much for the ‘lon g needle. ” Other details may be found In Diaconis

(1976) and In a forthcoming monograph by H. Solomon.

-.

~

.—.

~
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Buffon ’s needle may be used to obtain a connection with a quite

different aspect of geometrical statistics. Let us analyze the toss-

ing of the needle. Suppose now that an origin is marked on one of tl~
lines of the paral lel grid and that the needle is thrown so that Its

center rests on the plane a distance X from the marked line. Let

= Gaussian (0,02) so It has probabi lity density

f(x) — (a/~V)~~exp(-x
2/2a2)

It is then clear that if Y is the distance from the center of the

needle to the nearest line below it ,

Pro b (x < Y ~ x + dx) a 
~~ f(x — va)dx

(15~
— g(x)dx , say.

The density g(x) is concentrated on (O,a.) and g(x) Is periodic ,

period a. Thus we may write

g(x) } g exp (—2iriJx/a) . (16)
~1

It is shown that (see Hartman and Watson (1974)) this density can be

very wel l approximated by

(2wI0(K))~~exp K cos (2nx/a) (17)

where K is a suitabl y chosen function of a and that by certain

randomizing an exact result may be obtained. One of the commonest

distributions for describing non-uniformly distributed angles (which

we would need If we wished to give the needle a preferential oriente-

tion) is the von Mises distribution
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0
(2,rI0(Kfl

1exp K cos 0 . (18)

Our final two examples lead into random structures. Suppose tha

the spacings of the parallel grid are identical ly and Independent ly

dis tributed (1.1.0.) with some density function h(a) w~ 1ch Is zero

when a < a0. Cons ider a needle of length ~ ~ a0 tossed at random.

Then

Prob(cen ter of the needle
falls In a space , ah(a)da
a < space < a + da)

~~ah(a)da

E (a.) 
-

S i nce

Prob(cu t~space a) 
a & &.

Pro b (cu t) ah ( a) da

2 1
ir E(a)

Thus by repeating this experiment the only thing we can learn about

the spacings Is E(a). There Is , for example , no way one can check

whether they are 1.1.0. This would require a lon g needle.

Thus let us cunsider an Infinit ely long needle and suppose that

we could know , after it is tossed at random onto an arbItrary para-

llel grid , the sequence of spaces on the needle between l ine cross-

ings , (s1 J. If the needle makes an angle B (which we do not know)

and the grid spacings are a1 then a1 ~i 
sIn 0, for all positiv e

- J

__________________________ — ———------~~~~ -——.—.—— - — - - - —.- - —— - - - - —~~~~~~ — ——-—— - - ——-— —
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and negctive Integers 1. From only tne sequence 
~~~ 

we can chock

a 1  oropertles of the (a.i} sequence that 10 not depend upon scale,

e.g., thet it is I.I.D., stationary , etc.

The cut points on the needle form a Point Process In one dlsa2n-

sion . The discussion of Point processes In space is the largest

aspect of geometric probability and statistics in the modern sense,

the topic to which we now turn .

3. ~~AT IS STATISTICAL GEOMETRY?

Everyone Is fairly clear what is meant by geometry but

statistics is less well defined. It has a number of facets —

() exploring data for regularities , I.e., patterns; (ii) estimating

!iopdlation ” characteristics from a sample; (iii) testing hypotheses~
(h) designing samplir.g plans to be effective and efficient (usually

by incl uding a random element).

Probability ~iodels enter (1) to (iv) in several ways:

a) by a scientific mechanism or model ,

b) by assumption ,

c) via a random sampling plan ,

and to different degrees. In (1) they may not enter explicitly at

all.

In statistical geometry our data will be a sample from some geo-

metrical populatlon .’

Such definitions do not convey much , so we now gi ve some example

of prob ld as and the groups that pursue them . (A) Grenander ’s books

on ‘Pattern Synthesis’ (1976) cover a vast area in a novel way not

represented at all at this Symposium , and I thInk they are of basic

- — — - -  - - --‘-- -
_______
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Impor tance. He has developed an abstract way of generating and distort-

ing patterns and then restoring them. The latter Is of course statis-

tic~l. He gives a wealth of d1vers~ examples ; one of the simplest

Is discussed below . (B) Classic al problems such as may be found in

the Kendall and Moran (1963) book. (C) The publicat ions of the

Fontainebleau School of Mathematical Morphology represent a different

line again. Their major achievement seems to me to be the wedding of

the image analyzer and mathem atical description of the objects

scanned. Whi le much practical work Is done, the publications deal

more with the mathematical theory than with the statistical aspects-

(0) The Stochastic Geometry pursued in Cambridge by 0. G. Kendall

(see, e.g., Harding and Kendal l , 1974) and others overlaps theoreti-

cally with the French School but has , it seems , purely mathematical

motivations. Like so much of this literature , it has not been re-

duced to a level of mathematical simplicity for practical statistical

use. CE) The Point Process literature , stemming from Bartlett (see,

e.g., 1963, 1964, 1976) origInated in practical statistical problems
and mainly in one dimension . It Is now pursued at a highly mathe-

matical level by Krickeberg (1977) and other Europeans In many dimen-

sions. Earlier practical work In Forestry , especially Matern ’s (1960)

has led to many papers -- see, e.g., the issuesof Blometrike.
Ripley ’s recent papers (1977., 1977b) have a combination of theory

and practice and extensive bibliographies.

While there are many mechanisms for generating point processes

In time , the few that do so In space are s ummarized by Ripley (1977.),

for example. The v*ain emphasis , in line with second order stationary

processes , Is t~e definition and esti mation of functions that control

______________ 

I

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ •
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the enhancement or Inhibition of neighboring points. Here , as in tim

series analysis , there is a large exploratory element. Even If there

were parametric models , it would rarely be possibl e to ~rite down the

likelihood of the data so that the time-honored statistical methods

illustrated earlier cannot be used . Computers are essential for al-

most all calculations , unlike the Buffon prob lems , e.g., variances

must usually be found by simulating.

In practice we will often want random sets, rather than the

Poisson fields of points , lines , flats , etc. that are most often

discussed. In his 1967 book Matheron made one of the early models

~nat can be dealt with easily — — the Boolean scheme . Here 1.1.0.

cop ies of a random set K1 are attached to a Poisson field of points

(x ,Ix 1cX) In a vector space to obtain the random s~t

A a U (K 1 + x1). Such a set is intuitively stationary , i.e.,

spatially homogeicous though not necessarily isotropic. If we know ,

for any fixed set B,

q(B) a Prob (kt~B • 0)

then

Prob (AflB • 0) • exp (_A j (1_q (I+O)dV (19)

where A is the Intensity of the Poisson process. In this Syaposium

Coleman went further in this construction than (19) which is the zero

term of a Poisson distribution.

Time series analysi s is about 100 ye ars old. It began as a

prac tical endeavo r , became very mathemat ical and it is only recently

that practical books and programs have been readily avail.ble . The
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time lag for this subject could be greatly shortened if theoreticians

would make the effort to write for practical users and not only for

other mathematicians.

We conclude with the simplest instance of problems in Grenander ’s

book (Ibid.). It illustrates (1) how a finite window is different

from a finite sample of I.I.D. observations, (ii) the use of Fourier

analysis. It Is the restoration of a linear lattice whose points

have been Independently displaced. The complete set of points is

a a + u~ + (v — ..., —1 , 0, 1, ...)

where a is a phase , ~ • the lattice spacing (unknown) and ~~ is

the noise. The window is the Interval (0,1). When the noise is small

with respect to 1, almost all the points that should be in (0,1) wil l

be there and no two points will have their true order Inverted. Then

we have an ordinary regression problem in estimating a and (.

When the noise is not small , success ive X points may not have suc-

cessive indices and the ‘wrong’ points may be in the window —— this

Illustrates point Ci). (This model is essentially the same as that

set up by 0. S. Kendall (1974) to detect a unit of measurement in an

archeological site.)

Here one automatically thinks of Fourier analysis. To save time ,

set a • 0 and define ,

I ex p i~~X ,  (20)
x
~
s(0,L) V

m(w)  • E~ (i~i)

1• r ~ exp (iwx)p(x)dx,Jo
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p

where

p(x)  • t f(x -

V

f(x) a density of the noise

and

p(x) a E p exp(-2irIk/~).

Then exp~~w - ~~~}1L] - 1

m ( w ) a t p k 
—

k i Lw  -

As L ’~~,

• 0, w + multiple of 2wkf~

Pk~ ~ 
— multiple of 2wk/~

Thus we would hope to see a pattern of peaks near the points 2skj’~
from which we would first try to see if there 

~! a pattern , an d if so

to estimate ~~.

var ~(w) - - I f*(w)I1

where f* is the Fourier transform of f so that

Thus var (~(w)) may also help us learn about the noise since this Is

governed by f.

The same computat ion with a Poisson process leads to

E(~) • A 
- 1  , var • a 

~~
. , a very differen t pi cture also

seen with all renewal processes. Thus • does not diffe rentiate be-

tween stationary point processes but one hopes that the variance migh

If w~ define

- 

~~~~~~~~~

[__
—_ 

-

~
--——--———----- - -

~~~~ 
-.- —- - - -w-~ - -- — - - -  
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N (x) a 0 points in (0,x)

we hive ,
• L~

. J exp(iwx)dN (x) ,
‘0

I$ (w) 1
2 

— 4 ftfexp (iw (x_y))dN(x)dN(y)
Assume with Bartlett (1976) tha t

E(dN (x))2 a Adx
(21)

EdN(x)dN(y) - (A + W(x-y)}dxdy

If W(.) in (21) is Identically zero, the points are Poisson . Let

W(v) — W(-v). It is clear that if W(v) is positive , a point at y

means that there is. relati ve to the Poisson process, more chance of

having a point at y + v , I.e., enhancement. Negative values mean

Inhibition. Now

£1.12 
~~
. + + .

~~

. 

J
”
w (v)exp (iwv)dv (22)

which verifies our notion that knowledge of 1,12 should yield in-

formation about the function W(v).

In this use of Fourier analysis one should note that the F.F.T.

cannot be used; it is hard to adjust for bias and finite L and hard

to find the variance of ~~~~ even In R’. Th• vagueness in these

last two paragraphs is to some extent unavoidab le. When dealin g with

unknown func tions, one simply has to use j udgment, try various tricks

with the computer -- there cannot be any simple and apparent ly clear

cut methods of the t-test type .

——- -._-_ __.___ _ _---—._._ - —•.-..— ,-‘--..-,‘ —
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Th is technical report was originally delivered as a -lecture at

he Buffon Bicentenary Symposium on Geometrical Prob bility, Image
.nalysis, Mathematical Stereology and their re V e to the deter-
ij~~tIon pf Biolo g ical St ructfa r.~ ParJj Jim. 2 £_ 1077..
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Buffon need le, stochastic geometry, pattern synthesis,
poin t processes .
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The Suffo n needle proble m and so me variat ions are used to
illu gtrate classical statistical methods of esti mation and to lead
Into , and contrast wi th , the prob lems which arise wh en a sample 01
some random structure Is the data . The flavor of these prob lems
i s conveyed largely by discussion of the simple st , and most des-
cribed , case , that of point processes. —
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